Automated synthesis of 1-[11C]acetoacetate on a TRASIS AIO module

Kiran Kumar Solingapuram Sai a,⁎, H. Donald Gage a, Frankis Almaguel a, Bryan Neth b, Timothy M. Hughes c, Sebastien Tremblay c, Christian-Alexandre Castellano c, Stephen C. Cunnane c, Matthew J. Jorgensen d, Suzanne Craft b, Akiva Mintz a

a Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC, USA
b Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA
c Research Center on Aging, Sherbrooke Molecular Imaging Center, Université de Sherbrooke, Sherbrooke, Quebec, Canada
d Department of Pathology-Comparative Medicine, Wake Forest School of Medicine, USA

HIGHLIGHTS

• Automated and simplified production of 1-[11C]acetoacetate using TRASIS AIO module.
• 1-[11C]acetoacetate radiochemistry can be directly translated and easily adapted to any automated modules for human injections.
• 1-[11C]acetoacetate production was validated through monkey PET imaging studies for the first time.

ARTICLE INFO

Keywords:
Automation
Ketone metabolism
PET imaging
Ion-exchange column
Formulations
Non-Human primates

ABSTRACT

We automated radiochemical synthesis of 1-[11C]acetoacetate in a commercially available radiochemistry module, TRASIS AllInOne by [11C]carboxylation of the corresponding enolate anion generated in situ from isopropenylacetate and MeLi, and purified by ion-exchange column resins. 1-[11C]acetoacetate was synthesized with high radiochemical purity (95%) and specific activity (~ 66.6 GBq/μmol, n = 30) with 35% radiochemical yield, decay corrected to end of synthesis. The total synthesis required ~ 16 min. PET imaging studies were conducted with 1-[11C]acetoacetate in vervet monkeys to validate the radiochemical synthesis. Tissue uptake distribution was similar to that reported in humans.

1. Introduction

Under normal conditions, glucose is the brain's primary fuel; however during prolonged fasting or at lower plasma glucose concentrations, fat-derived ketones constitute the brain's main fuel (Cunnane et al., 2016; Willis et al., 2002). Ketone bodies consist of acetoacetate, β-hydroxybutyrate and acetone. These play a vital role in brain lipid synthesis in the fetus and in infant brain development (Roy et al., 2012; Yudkoff et al., 2004). During long-term starvation in adults, plasma ketones reach a concentration of 2-6 mM and can supply up to ~ 70% of the brain's fuel needs (Bianchi and Davis, 1996; Owen et al., 1967).

Alzheimer's disease (AD) is the most common neurodegenerative disease and the leading cause of severe dementia, especially among the older adults. The occurrence of AD exponentially increases with age once individuals reach 65 years of age or older. There is no specific treatment regimen to preclude the symptoms of AD nor are the presently available ones are effective. Low uptake of 2-[18F]fluoro-β-glucose ([18F]FDG) in AD-susceptible regions has been proposed as a key markers in AD pathophysiology (Mosconi, 2005). Considerable scientific evidence suggests that brain glucose metabolism is inhibited during AD (Bianchi and Davis, 1996; Castellano et al., 2015). As the main fuel alternate to glucose, ketones can account for up to 60% of brain metabolic demands in order to help mitigate states of decreased glucose metabolism in AD. One of the ketone-based strategies studies aimed at slowing the progression of AD in the high Fat-ketogenic diet. One of the several research pathways studied to improve the conditions of AD is 'ketogenic diet' (Cunnane et al., 2010; Elwood et al., 1960; Loesner et al., 1995; Owen et al., 1967; Pifferi et al., 2008). Cognitive function can be significantly improved in memory-impaired adults by a ketogenic diet intervention (Courchesne-Loyer et al., 2012; Krikorian et al., 2010; Nugent et al., 2014; Pifferi et al., 2008; Yudkoff et al., 2004).

Current strategies to assess brain metabolism using [18F]FDG provide no information regarding the brain's innate ability to use ketone...
bodies. PET imaging using $[^{11}C]$acetate ($[^{11}C]$AcAc) can provide quantitative analysis of brain ketone utilization that can help uncover the role of ketone metabolism in early AD; such information could potentially lead to new preventive and therapeutic strategies (Authier et al., 2008; Courchesne-Loyer et al., 2016; Nugent et al., 2013). These potentially lead to new preventive and therapeutic strategies (Authier et al., 2008; Courchesne-Loyer et al., 2016; Nugent et al., 2013). These

2. Materials and methods

The following chemical reagents were purchased from Sigma-Aldrich (St. Louis, MO) and were used without any purification: methyllithium (MeLi, 1.6 M diethylether), isopropenylacetoacetate (IPA), anhydrous tetrahydrofuran (THF), sodium hydroxide solution (NaOH, 1.0 M), citric acid monohydrate (CAM), trisodium citric acid (TCA), sodium chloride (NaCl) and lithium acetoacetate (LAA). All reactions were carried out using anhydrous solvents unless otherwise stated. Both the resin materials i.e., Dowex × 8–100 (cation resin material) and AG 1X-8 (anion exchange resin material), chromatography flex columns and the analytical HPLC column heater were purchased from Fisher Scientific (Hampton, NH). Aqueous 5 mM sulfonic acid (H$_2$SO$_4$) solution was purchased from VWR scientific (Radnor, PA). Analytical HPLC was performed using Varian ProStar system, which includes quaternary gradient pump, manual injector, a variable wavelength detector and a standard Bioscan radioactivity-HPLC-flow detector. Aminex HPX-87 H analytical column (300 × 70 mm) was purchased from Bio-Rad (Hercules, CA). Sterile pyrogen-free filters were purchased from Millipore Corp (Billericia, MA).

2.1. TRASIS AIO preparation

TRASIS AllInOne (AIO) is a commonly used radiochemistry module for clinical GMP-grade radiopharmaceutical production (AIO, 2014). $[^{11}C]$AcAc radiosynthesis was carried out with TRASIS AIO module using the ports as shown in Fig. 1.

2.2. Cartridge conditioning and citrate buffer setup

Citrate buffer solution, pH 4.0 for eluting the final radioactive product $[^{11}C]$AcAc was made according to the previously published procedures (Tremblay et al., 2007). Briefly, for a stock solution (25 mL), CAM (0.3 g, 1.42 mM), TCA (0.18 g, 0.7 mM) and NaCl (0.12 g, 1.95 mM) were added in a sterile laminar fume hood. The solution was stored at 4 °C and was filtered through a 0.22 μm pyrogen-free Millipore filter for every batch synthesis. Both the cation and anion exchange resin cartridges were pre-conditioned following published procedures. Briefly, Dowex 50WX8-100 was placed in a small chromatography flex column and washed with sterile water (10 mL). AG 1X-8 was placed in a separate flex column and washed with aqueous NaOH solution (5 mL, 1.0 M) followed by sterile water (25 mL). Both the ion exchange resin materials had a final pH between 7.0 and 7.5.

2.3. Radiochemical synthesis of $[^{11}C]$AcAc

2.3.1. Production of $[^{11}C]$CO$_2$

$[^{11}C]$CO$_2$ was produced in the Wake Forest PET Center cyclotron facility on a GE PETtrace- 800 cyclotron. $[^{11}C]$CO$_2$ was produced from the nuclear reaction 14N(p,a)11C by proton bombardment of a niobium target to a pressure of 17.2 bar (250 psi). A nitrogen target containing 0.2% oxygen was irradiated for 15–20 min with a 45 μA beam of 16 MeV protons, to produce up to 40–42 GBq of $[^{11}C]$CO$_2$ (Solingapuram et al., 2014). $[^{11}C]$CO$_2$ released from the GE PET-trace cyclotron was directly bubbled and trapped into the reaction vial assembled in the TRASIS AIO module using anhydrous potassium perchlorate (KClO$_4$, 8 g) trap.

2.3.2. Precursor reaction mixture setup

The enolate anion of acetone was prepared following a previously published method with slight modification (Tremblay et al., 2008, 2007). Briefly, IPA (1.0 eq) was slowly added drop-wise to the glass vial loaded with MeLi (1.6 M in diethyl ether, 1.85 eq) at ~75 °C under inert conditions. Anhydrous THF (0.75 mL) was slowly added to the reaction mixture and allowed to stir for 1 h at ~40 °C to ~70 °C under an inert atmosphere (Scheme 1). MeLi afforded better yields of final radioactive product when used as a base, compared to nBuLi. The crude enolate solution formed in situ was used for radiolabeling as is without any additional purification.

2.3.3. $[^{11}C]$AcAc production

Optimized radiosynthesis of $[^{11}C]$AcAc was completed via carboxylation, hydrolysis, resin cartridge purification and citrate buffer formulation (Tremblay et al., 2007). The TRASIS AIO setup for radiosynthesis is shown in Fig. 2. Firstly, the crude enolate solution (0.8–1.3 mL) synthesized from MeLi-base catalyzed reaction of isopropenylacetate was placed in the reaction vial holder of the TRASIS AIO module, once the module was ready to receive $[^{11}C]$CO$_2$ gas from the cyclotron. The vial was then cooled to ~10 °C to ~40 °C using liquid nitrogen cooling setup from the module. $[^{11}C]$CO$_2$ released from the cyclotron was bubbled and trapped into the reaction vial with the enolate solution at the same temperature. After complete transfer of radioactivity (3–4 min), the radioactive reaction mixture was allowed
to react for an additional 6 min, which brought the vial temperature to 5–10 °C. The reaction mixture was then hydrolyzed with sterile water (10 mL), drawn into the 20 mL syringe using helium, and then pushed back into the vial for thorough mixing. From the 20 mL syringe, the reaction mixture solution was slowly pushed through the (+)Dowex and (−)AG 1X-8 resin cartridges into the waste vial (placed in reaction vial holder #2). At this step, the desired product $[^{11}C]AcAc$ was trapped in AG 1X-8 cartridge. To remove undesired water soluble impurities, the AG 1X-8 cartridge was washed with an additional 10 mL of sterile water that passed into the waste vial, the cartridge was allowed to dry using helium flow for 1.5 min. The radioactive product $[^{11}C]AcAc$ was eluted from the AG 1X-8 cartridge with citrate buffer solution (pH = 4.0), coming from port # 4 from a 10 mL syringe. The final product was directly eluted into the final product vial through a sterile 0.22 µm pyrogen-free Millipore filter. The final product vial with $[^{11}C]AcAc$ was then degassed using helium for an additional 1.5 min to remove any excess $[^{11}C]CO_2$ and was used for quality control analysis and animal studies.

The chemical and radiochemical purity of the collected radioactive aliquot was checked by performing a HPLC injection on an Aminex HPX-87 H analytical column (300 × 70 mm) at 35 °C using a column heater. The mobile phase was aqueous sulfuric acid solution (aq. H$_2$SO$_4$, 5 mM) and the UV detection was set at 210 nm with a heater. The mobile phase was used to remove any excess $[^{11}C]CO_2$ and was used for quality control analysis and animal studies.

The reaction mixture was then hydrolyzed with sterile water (10 mL), drawn into the 20 mL syringe using helium, and then pushed back into the vial for thorough mixing. From the 20 mL syringe, the reaction mixture solution was slowly pushed through the (+)Dowex and (−)AG 1X-8 resin cartridges into the waste vial (placed in reaction vial holder #2). At this step, the desired product $[^{11}C]AcAc$ was trapped in AG 1X-8 cartridge. To remove undesired water soluble impurities, the AG 1X-8 cartridge was washed with an additional 10 mL of sterile water that passed into the waste vial, the cartridge was allowed to dry using helium flow for 1.5 min. The radioactive product $[^{11}C]AcAc$ was eluted from the AG 1X-8 cartridge with citrate buffer solution (pH = 4.0), coming from port # 4 from a 10 mL syringe. The final product was directly eluted into the final product vial through a sterile 0.22 µm pyrogen-free Millipore filter. The final product vial with $[^{11}C]AcAc$ was then degassed using helium for an additional 1.5 min to remove any excess $[^{11}C]CO_2$ and was used for quality control analysis and animal studies.

The chemical and radiochemical purity of the collected radioactive aliquot was checked by performing a HPLC injection on an Aminex HPX-87 H analytical column (300 × 70 mm) at 35 °C using a column heater. The mobile phase was aqueous sulfuric acid solution (aq. H$_2$SO$_4$, 5 mM) and the UV detection was set at 210 nm with a heater. The mobile phase was used to remove any excess $[^{11}C]CO_2$ and was used for quality control analysis and animal studies.

3. Results and discussion

3.1. Radiochemistry

$[^{11}C]AcAc$ radiosynthesis was first developed by Tremblay et al. in a custom-built C-11 radiochemistry module with vials and pressure/vacuum gauge setups for gas flow (Tremblay et al., 2007). We simplified and automated radiosynthesis in a commercially available radiochemistry device, the TRASIS AIO. Previous approaches employed drying methods ranging from molecular sieves with a helium conditioning setup to dry incoming radioactive $[^{11}C]CO_2$ gas from the cyclotron (Prenen et al., 1990; Tremblay et al., 2008, 2007). We had simplified the entire drying process by using a KClO$_4$ trap. This KClO$_4$ trap was changed once for every 20–25 syntheses.

Radiolabeling of $[^{11}C]AcAc$ was accomplished by employing simple and convenient conditions for C-11 carboxylation of the enolate anion of acetone, generated in situ from the MeLi-catalyzed reaction of IPA in THF. Carboxylation, hydrolysis, ion-exchange resin purification and formulation as outlined in Fig. 2 resulted in $[^{11}C]AcAc$ processed in the TRASIS AIO module with ~ 35% radiochemical yield after final formulation including degassing. The radiochemical purity of $[^{11}C]AcAc$ was greater than 95% and chemical purity was greater than 90%. $[^{11}C]AcAc$ was identified by co-eluting with a solution of standard lithium acetooacetate. Retention time of $[^{11}C]AcAc$ on the analytical HPLC system was 13.1 – 13.5 min. Apart from the acetooacetate peak, trace peaks of sodium chloride at 5.8 min citrate buffer 7.6 min and carbonic acid at 17 min were obtained in the UV chromatogram. $[^{11}C]AcAc$ was obtained in a specific activity of ~ 66.6 GBq/µmol (decay corrected to EOS, n = 30), which is sufficient for in vivo validation. The entire synthetic procedure, including production of $[^{11}C]CO_2$ trapping, reaction, resin purification and formulation of the radiotracer for in vivo studies, was completed within 16 min. Due to the simplification and automation of the process, the radiochemical synthesis of $[^{11}C]AcAc$ can be easily translated to other automated radiochemistry modules.

3.2. Monkey PET imaging studies

All animal experiments were conducted under IACUC approved protocols in compliance with the guidelines for the care and use of research animals established by Wake Forest Medical School Animal Studies Committee. PET imaging studies of $[^{11}C]AcAc$ were performed in adult female vervet monkeys (n = 10, ~ 4–7 kg) between 8 and 23 y old. We used a GE 16-slice PET/CT Discovery ST Scanner with 24 detector rings that provide 47 contiguous image planes over a maximum 70 cm transaxial field of view with CT attenuation correction. Monkeys were fasted for 12 h before the PET study. The animals were initially anesthetized using intramuscular ketamine (10 mg/kg) and transported to the PET scanner suite. Upon arrival, each monkey was intubated with an endotracheal tube and anesthesia was maintained at 1.5% isoflurane/oxygen throughout the PET scanning procedure. The monkey was placed in the scanner and a catheter inserted into an external vein for tracer injection and fluid replacement. Body temperature was maintained at 40 °C and vital signs (heart rate, blood pressure, respiration rate, and temperature) monitored throughout the scanning procedure.

An initial low-dose CT-based attenuation correction scan was acquired. Next, $[^{11}C]AcAc$ (0.18 – 0.3 GBq) was injected and a 30-min dynamic whole body acquisition scan was acquired. 70 frames were acquired over 30 min (6 × 10 s, 15 × 120 s) in 3D mode (i.e., septa retracted). For each frame, image reconstruction of the acquired emission data was done with full quantitative corrections including attenuation and reconstructed into forty-seven 128 × 128 matrices (Bentourkia et al., 2009; Nugent et al., 2013). Data was analyzed using PMOD Biomedical Image Quantification Software (version 3.5; PMOD Technologies, Zurich, Switzerland). Uptake in the brain and other organs (including lung, liver, spleen, kidney, heart and muscle) were defined by its standardized uptake value (SUV) calculated by dividing the tracer concentration in each pixel by the injected dose per body mass. On the dynamic scan, regions of interests were drawn on the whole brain and time activity curves were generated.

4. Discussion

The organ distribution of $[^{11}C]AcAc$ in monkey brain (through PET imaging) were very similar to those pattern observed in human brain (Nugent et al., 2013). $[^{11}C]AcAc$ readily entered the brain and peaks within 5 min of injection (Neth B, 2016). The organ distribution of $[^{11}C]AcAc$, shown in Fig. 3

Fig. 2. TRASIS AIO reaction setup for $[^{11}C]AcAc$ radiosynthesis.
demonstrated predominant renal clearance with notable uptake in the heart and liver. This is significant due to the interest in using [11C]AcAc imaging for cardiovascular studies in nonhuman primates, since it is a substrate of cardiac metabolism (Croteau et al., 2010, 2014; Maalouf and Yin, 2013).

4. Conclusions

We report the simplified and automated radiolabelling procedure for [11C]AcAc with high radiochemical yield, radiochemical purity and specific activity. This method can be directly translated and easily adapted to any automated modules for human injections and clinical trials. We further validated the radioactive uptakes of [11C]AcAc in vervet monkeys using PET imaging studies for the first time. The radioactive uptake, distribution and clearance patterns of [11C]AcAc were similar to those in humans, raising the possibility of using these methods to explore alternate brain energy metabolism in nonhuman primate models of human diseases. This study strongly reinforces the utility of [11C]AcAc PET studies to uncover the role of ketone metabolism in normal and disease states, and could lead to new preventive and therapeutic strategies. In particular, translational [11C]AcAc PET imaging studies might fill the missing gaps in understanding early features of AD and its progression to dementia, using ketogenic diet interventions.

Fig. 3. a. Whole body PET image b. organ biodistribution through PET-SUV data analysis (n = 6) of adult vervet monkey obtained after iv injection of [11C]AcAc (0.3 GBq).

Fig. 4. Representative time activity curves (TACs) starting from 0 to 1800 s from a female monkey whole brain injected with [11C]AcAc (0.3 GBq).

Funding sources

This work was supported by charitable donations from the Hartman Foundation, the NIH R01CA179702 (Mintz), an American Cancer Society Mentored Research Scholar grant 124443-MRSG-13-121-01-CDD (Mintz), the NIH Vervet Research Colony grant (P40-OD010965), the NIH AD Center grant (P30AG049638) and the Translational Imaging and Wake Forest Translational Imaging Program – Clinical Translational Science Institute (UL1TR001420) and the Université de Sherbrooke Research Chair in Brain Metabolism and Aging.

References

